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Exactly solvable model mimicking the H2 molecule in
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Avoiding the limitations of the Born–Oppenheimer approximation remains an issue
of continuing importance in molecular physics. If we take the H2 molecule as a proto-
type, then one uses, in some sense, the ratio of electron mass m to nuclear mass M as
an expansion parameter, sometimes cited to be explicitly (m/M)1/4. Here, we employ a
model of such a two-electron diatomic molecule set up by Makarewicz [Am. J. Phys. 54
(1986) 178] to study the exact ground-state wave function obtained by treating electrons
and nuclei on the same footing, Of course, to obtain such a wave function analyti-
cally means adopting model force laws, both for confinement and for the interelectron-
ic interaction. From the exact wave function and ground-state energy, contact is finally
established with the large nuclear mass limit.

KEY WORDS: nuclear motion, Makarewicz’s model, Born-Oppenheimer approxima-
tion, adiabatic approximation, harmonic approximation

1. Background

Although it will be necessary to adopt model interactions to make ana-
lytical progress in treating molecular systems without invoking the Born–
Oppenheimer (BO) approximation, it will be useful background to the model
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of a two-electron diatomic molecule such as H2 to review molecular systems as
often treated in current quantum-mechanical literature.

Consider a molecular system described by the Hamiltonian

H = −
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i
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−
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. (1)

Take an eigenfuntion �(r1, . . . , rn; R1, . . . , RN ) of (1). In the traditional BO
or adiabatic approximation the molecular wavefunction is decomposed as

�(r1, . . . , rn; R1, . . . , RN ) = �R1,...,RN (r1, . . . , rn)X (R1, . . . , RN ) or

�(r; R) = �R(r)X (R) (2)

with R ≡ R1, . . . , RN and r = r1, . . . , rn.�R1,...,RN (r1, . . . , rn) is an elec-
tronic wavefunction, depending parametrically on the nuclear positions, and
X (R1, . . . , RN ) is a nuclear wavefunction. A variational way to formulate the
adiabatic approximation and derive the equations that �R(r) and X (R) satisfy
is the following (see, e.g., Messiah [1] and Rainer [2]).

Let us require a priori that �R(r) satisfy the electronic equation
⎛
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⎞

⎠�R(r) = E(R)�R(r). (3)

We say that �R(r) depends parametrically on R because the external potential
in (3) depends on R. As a consequence, we have

∫ ∫
dr(n)|�R(r1, . . . , rn)|2 = 1 (4)

for every R.
Next, let us form the expectation value of the full Hamiltonian (1)

E =
∫ ∫

dR(N )X∗(R)

{∫ ∫
dr(n)�∗

R(r1, . . . , rn)H�R(r1, . . . , rn)

}
X (R) (5)

and minimize E by varying X . We cannot vary �R(r) as well, since �R(r) was
determined in the previous step, As a result of the minimization, we obtain the
Schrödinger equation for X :
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X (R) = E X (R). (6)
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In the BO approximation the last small positive potential term on the left-hand
side of equation (6) is neglected.

Having given this background to current treatments in molecular physics
[3], we shall proceed by moving from the complete non-relativistic Hamiltonian
(1) to a simplified model in which, for the analog of the H2 molecule, one mod-
ifies the three Coulombic terms entering equation (1), but retains the treatment
of the kinetic energy operators of electrons and nuclei on the same footing. We
follow Makarewicz [4] by simplifying both ‘confinement’ and interparticle inter-
actions to allow a solution. It is important to stress that, we limit the discussion
below to the lowest energy state, which involves the L = 0 rotational state. Fur-
thermore, as the title indicates, we are mimicking the H2 molecule, with 1/2 spin
nuclei coupled to a singlet.

2. Hamiltonian of Makarewicz’s model

In early work on a model two-electron atom, Kestner and Sinanoglu [5]
replaced attractive Coulomb confinement of ‘electrons’ by ‘nuclei’ using har-
monic forces. This is the first change therefore, we make in the realistic non-rel-
ativistic Hamiltonian (1) of conventional quantum chemistry. Second, following
Makarewicz [4], the repulsive Coulomb potentials 1/ri j are replaced by inverse
square terms 1/r2

i j . Then Makarewicz solves by an exact analytical approach a
number of problems, from which we single out his example of a four-body sys-
tem: namely a two-electron diatomic molecule. We use his notation for this sys-
tem, which is explained in figure 1.
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Figure 1. Jacobi coordinates r in the model homonuclear diatomic molecule.
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We take particles 1 and 2 to be the nuclei, with equal masses M , and 3
and 4 to be electrons, each of mass m. The attractive (harmonic) interactions are
then characterized in Makarewicz’s model by constants κ13 = κ14 = κ23 = κ24 =
κA, and the repulsive 1/r2

i j interactions by constants κ12 = κ34 = κR . The ground-
state solution of the Schrödinger equation has the form

�(r1, r2, r3, r4) = �1(r1)�2(r2)�3(r3) exp[(iK.r4) (7)

the last term merely representing the center-of-mass motion, We emphasize, as
in figure 1, that

r =

⎡

⎢⎢⎣

r1
r2
r3
r4

⎤

⎥⎥⎦ , (8)

whereas the actual positional coordinates x given by

x =

⎡

⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎦ (9)

are related by a matrix A as set out below.

2.1. Form of transformation matrix from original coordinates x to Jacobi
coordinates r

As set out formally by Makarewicz [4], the transformation r = Ax relates
original positional coordinates x to the Jacobi coordinates r entering equation
(7), where the matrix A is found to have the form

A =

⎡

⎢⎢⎣

1 −1 0 0
0 0 1 −1
−1/2 −1/2 1/2 1/2
M/[2(M + 1)] M/[2(M + 1)] 1/[2(M + 1)] 1/[2(M + 1)]

⎤

⎥⎥⎦ (10)

with units, in which the electron mass m = 1. Having established the coordi-
nate transformation for this model homonuclear diatomic molecule, let us imme-
diately proceed as an example to the so-called BO limit, in which the (equal)
nuclear masses M are allowed to become large. This limit is given by

lim
M→∞ A =

⎡

⎢⎢⎣

1 −1 0 0
0 0 1 −1
−1/2 −1/2 1/2 1/2
1/2 1/2 0 0

⎤

⎥⎥⎦ . (11)
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Using the general matrix A in equation (10), our first objective is to derive
the Hamiltonian Ĥ in the form, corresponding to the separable wave function
(7),

Ĥ = h1(r1) + h2(r2) + h3(r3) + h4(r4). (12)

The simplest term is h4(r4), which corresponds to a free-particle Hamiltonian
(see equation (40) below). The next simplest term is h3(r3), which corresponds to
a harmonic oscillator Hamiltonian (see equation (39)) as can be confirmed using
the matrix (10). This yields, almost immediately, the explicit form of the unnor-
malized �3(r3) in equation (7),

�3(r3) = exp
(
−2
√

MκA/(1 + M)r2
3

)
(13)

with again m = 1.
As to h1 and h2, it can be shown from equation (10) that they contain

‘kinetic’ parts of the form −λi∇2
i/2, and explicitly the Schrödinger equations for

�1(r1) and �2(r2) entering equation (7) are then
(

−�
2

M
∇2

1 + κAr2
1 + κR

r2
1

)
�1 = ε1�1 (14)

and
(

−�
2

M
∇2

2 + κAr2
2 + κR

r2
2

)
�2 = ε2�2. (15)

The physical solutions are readily verified to be

�1(r1) =
[(

MκA/�
2
)1/4

r1

](√1+4MκR/�2/2−1/2
)

exp
(

−
√

MκA/�2r2
1/2
)

(16)

and

�2(r2) =
[(

mκA/�
2
)1/4

r1

](√1+4MκR/�2/2−1/2
)

exp
(

−
√

mκA/�2r2
2/2
)

. (17)

Corresponding to the exact ground-state wave function described above, the
ground-state energy for κ = 0 in equation (7) is readily written as

Eground-state = √
κA

(
2 +

√
1 + 4κR

)
+ 3

√
(1 + M)κA

M

+
√

κA

M

(
2 +

√
1 + 4κR M

)
. (18)

This is the point to consider physical consequences of the above exact
ground-state wave function in which the kinetic energy operators of nuclei and
electrons have been treated on the same footing.
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3. Probability density of nuclear separation in the two-electron ‘artificial’
molecule

In order to make some contact with the large nuclear mass limit, which is a
major focus of the present study, it will be useful next to calculate the probability
density of nuclear separation from the exact wave function (7). Starting from the
general probability density ��∗, this is immediately known as an explicit func-
tion of r1, r2, and r3. But, we wish to integrate out the electronic positional coor-
dinates x3 and x4 to obtain the following conditional probability density

Pn(x1, x2) = �2
1(r1)

∫
�2

2(r2)�
2
3(r3)dx3 dx4. (19)

But by changing the integration variables to (x3+x4)/2 and (x3−x4), the integral
in equation (19) is unity for normalized �2 and �3 and Pn is evidently equiva-
lent, in this artificial two-electron molecule, to �2

1(r1), which is known explicitly
from equation (16). The radial density 4πr2 Pn(r) is plotted in figure 2, for differ-
ent masses M and for κA = 1 and κR = 1. The resulting internuclear potential
energy is shown in figure 3. The choice of κA and κR determines the position of
the maximum of the radial density above for a given mass M . For fixed κA and
κR and for sufficiently large M the position of this maximum becomes indepen-
dent of nuclear mass. Figure 4 shows a plot of the average internuclear separa-
tion as a function of (1/M)1/4. At the limit of infinite mass, the nuclei have the
same behavior as in the harmonic approximation, displaying very small oscilla-
tions around a well-defined equilibrium position. But the lower their mass, the
higher the amplitude of these oscillations, and in this new regime the effects of
anharmonicity become more evident. Anharmonicity results in an average inter-
nuclear separation which increases with 1/M1/4, as shown in figure 4. The stan-
dard deviation of the internuclear separation, which is related to the half-width
of the radial distribution 4πr2 Pn(r), is displayed in figure 5 against the same var-
iable 1/M1/4. This would become exactly linear at sufficiently large nuclear mass.
In this context, a further interesting property to analyze is the relative motion
nuclear kinetic energy. This quantity is plotted in figure 6. In this case, in the
large mass limit, the above contribution to the kinetic energy becomes equal to
half the zero point energy of the harmonic approximation as expected.

Turning from this conditional nuclear probability to ��∗ itself again, we
can rewrite this, for sufficiently large nuclear mass, as

��∗ = fM large(r1)�
2
2(r2) lim

M→∞ �2
3(r3). (20)

Let us then focus on non-analytic behavior, for sufficiently large M , in the func-
tion fM large(r1). We can write this function as
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Figure 2. Radial density 4πr2 Pn(r) as defined below equation (19) for three different nuclear
masses M = 1, 10, and 100, and for potential energy parameters κA = 1 and κR = 1, for units in
which electron mass is itself unity. Note the modest dependence of peak position on nuclear mass M .
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Figure 3. Internuclear potential energy as a function of the internuclear separation for κA = 1 and
κR = 1.

fM large(r)=
[√

κA

M
r2
]√

MκR

exp
[
−√MκAr2

]

×
{

(
√

MκR + ln(
√

MκAr2))

25πr
√

κR(M3κA)1/4
+ O(M−5/4)

}
. (21)
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Figure 4. Average internuclear distance (in atomic units) as a function of the BO expansion param-
eter 1/M1/4 for the exact model solution, and comparison with the equilibrium distance in the har-
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Figure 5. Standard deviation of the internuclear separation radial distribution 4πr2 Pn(r) as a func-
tion of 1/M1/4 for the exactly solvable model and for the harmonic approximation, in units in which

electron mass is taken as unity.

Already, the (m/M)1/4, identified in figures 2 and 3, is evident as one expan-
sion parameter. But, what seems remarkable about equation (21) is that other
non-analytic parameters involving the ratio of electron to nuclear mass also
enter, and this must come from the motion of a single particle in a potential
well (see figure 4), this being defined by the Schrodinger equation (14). How-
ever, the new non-analytic M-dependent terms entering equation (21), beyond



I.A. Howard / H2 molecule in the limit of large nuclear masses 611

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

 1.4

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 1

harmonic approximation
exact

M
-1/4

K
.E

.

Figure 6. Relative motion nuclear kinetic energy as a function of 1/M1/4 for the exactly solvable
model, and comparison with half the zero point energy of the harmonic approximation.

the customary expansion parameter (m/M)1/4 already exhibited, come from the
normalization of �2

1r. These terms are worthy of emphasis, and have the forms
(a) ln (

√
M) (b) (1/

√
M)

√
M . Although these precise forms may well be model-

dependent, they caution that, say beyond order (m/M)1/4, there may well be other
non-analytic behavior in the large mass limit. We emphasize that this behavior
is distinct from the expected delta-function singularity around the nuclear wave-
function in the limit m/M → 0.

4. Connection of exact ground-state energy (18) with Born–Oppenheimer and
adiabatic approximations

In this section, we revert to the notation used in setting out the Background
section. Let us employ r1 and r2 for electrons (mass m) and R1 and R2 for nuclei
(mass M). In the BO approximation, we must solve in the order

Ĥe�e = Ee�e (22)

ĤBO�n = EBO
tot �n, (23)

where

Ĥe = − �
2

2m
(∇2

1 + ∇2
2 ) + κA(r1, r2, R1, R2)

⎛

⎜⎜⎝

2 0 −1 −1
0 2 −1 −1

−1 −1 2 0
−1 −1 0 2

⎞

⎟⎟⎠

⎛

⎜⎜⎝

r1
r2
R1
R2

⎞

⎟⎟⎠
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+ κR

r2
12

+ κR

R2
12

(24)

and

ĤBO = − �
2

2M
(∇2

R1
+ ∇2

R2
) + Ee(R1, R2) (25)

with κA and κR the typical constants of the solvable model treated in the body
of the text. The electronic Hamiltonian can be rearranged in the following way

Ĥe = ĥ1 + ĥ2 + U (R1, R2), (26)

ĥ1 = −�
2

M ∇2
12 + κAr2

12 + κR

r2
12

, (27)

ĥ2 = − �
2

4m ∇2
p + 4κA

(
p − 1

2 (R1 + R2)
)2

(28)

U (R1, R2) = κA R2
12 + κR

R2
12

(29)

by putting as usual r12 = r1 − r2 and p = (1/2)(r1 + r2). The electronic energy is
then

Ee = E1 + E2 + U (R1, R2), (30)

E1 = √
κA(2 + √

1 + 4κR), E2 = 3
√

κA. (31)

To complete we must solve the BO equation (23). Again by using R12 = R1 −R2
and P = (1/2)(R1 + R2) we have

ĤBO = − 1
M

∇2
R12

+ κA R2
12 + κR

R2
12

− 1
4M

∇2
P + E1 + E2, (32)

which leads to the following total internal energy (center of mass motion omit-
ted)

EBO
tot = E1 + E2 +

√
κA

M

(
2 +

√
1 + 4κR M

)
. (33)

This is the BO result that is also the leading term of the exact result in
some m/M expansion. The exact result is given in equation (18) of the main text,
and using this one can write

Etot = EBO
tot + 3

2
√

κA
m

M
+ O((m/M)2). (34)

So, the unique effect is due to a reduced mass used in the exact treatment involv-
ing the pair electron mass and the pair nuclear mass.
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As a final comment, we can consider briefly the adiabatic approximation,
To the BO Hamiltonian we should then add the following operator

− m

4M
(< �e|∇2

P�e >e +2 < �e|∇P�e >e .∇P), (35)

where integration is done over the electronic coordinates. The second integral is
zero for the lowest energy state �e while the first is a constant (not depending
on nuclear coordinates). More precisely we have

− m

4M
(< �e|∇2

P�e >e= 3m

2M

√
κA. (36)

It becomes clear that the adiabatic approximation, in this solvable model,
corrects the BO approximation to first order in m/M .

5. Summary and future directions

To conclude, we wish to make a rather general comment on the status of
the adiabatic or Born–Oppenheimer approximation in the electronic structure
problem of molecules and condensed phases. The recent book by Martin [6]
treats this in a brief Appendix, which begins as follows: ‘The only small param-
eter in the electronic structure problem is the inverse nuclear mass 1/M , i.e., the
nuclear kinetic energy terms. The adiabatic or BO approximation is a system-
atic expansion in the small parameter that is fundamental to all electronic struc-
ture theory’. We reiterate that, while the model used here is for an ‘artificial
two-electron molecule’, in this exactly solvable problem such a systematic expan-
sion poses considerable questions. We exhibit the expansion parameter (m/M)1/4

quite clearly, though other non-analytic terms enter our large–M limit. Further
work, of course, is needed as to whether parallel non-analyticities occur in ‘real
molecules’ with purely Coulomb interactions. Naturally expanding the ground-
state energy (see section 4) in 1/M is a relatively straightforward matter, com-
pared with related attempts to expand probability densities, as, for example, in
equations (20) and (21).

Appendix: ground state in united-atom limit of diatomic molecule treated in main
text

Our purpose in this Appendix is to report the solution, for essentially the
same model, in which the two nuclei, denoted 1 and 2 in the main text, are fused
together – the united-atom limit. Then, we have a three-body problem when we
retain finite nuclear mass, which, for convenience of terminology, we shall denote
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by Ma(= 2M). Makarewicz has set up the transformation from positional coor-
dinates x to Jacobi coordinates r, and after correcting a minor misprint in this
paper, we can write the matrix Aa as

Aa =
⎡

⎣
1 −1 0
−1/2 −1/2 1
1/(2 + Ma) 1/(2 + Ma) Ma/(2 + Ma)

⎤

⎦ , (37)

where the last row of Aa becomes 0, 0, 1 in the BO approximation, correspond-
ing to the limit of large Ma . Once again, r and x denote column vectors:

r =
⎡

⎣
r1
r2
r3

⎤

⎦ : x =
⎡

⎣
x1
x2
x3

⎤

⎦ . (38)

Using these results, One obtains fairly readily the kinetic energy operator T̂ in
the form

T̂ = −1
2

[
2∇2

1 +
(

1
2

+ 1
Ma

)
∇2

2 + 1
2 + Ma

∇2
3

]
, (39)

while the potential energy V follows as

V = 1
2
κAr2

1 + 2κAr2
2 + κR

r2
1

(40)

with the force constants given by

κ13 = κ23 = κA, κ12 = κR . (41)

Again the wave function evidently separates into the form

�(r1, r2, r3) = �1(r1)�2(r2) exp(ik · r3), (42)

�2(r2) is entirely similar to �3(r3) above, while �1(r1) is a scaled form of �2
given earlier. Hence a complete solution is available for this artificial united
atom.
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